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The steady heat conduction of disperse  media consist ing of identical spherical  part icles  is ca l -  
culated for  smal l  Peclet  numbers cha rac te r i z ing  the heat  t r ans fe r  at the level of the individual 
par t ic les ;  heat t r ans fe r  by contact  conduction over  the d isperse  phase is neglected. 

The theoret ical  investigation of the thermophysicat ,  e lec t rodynamic ,  and other proper t ies  of heteroge-  
neous mater ia ls  containing d iscre te  part icles  of a d isperse  phase began with Maxwell [1] and Rayleigh [2], and 
the number  of papers in this field is ve ry  large (see the reviews [3-6]). The most  popular lines of research  
are  represented by the theories of [7-10]; more  recent  data are descr ibed in [3-6] and also in [11-14]. Essen-  
tially, however,  accurate  results  have only been obtained for the effective charac te r i s t i c s  of dilute sys tems ,  in 
which the volume content of part icles is low. Generalizations to concentrated sys tems  are  based on more or  
less plausible hypotheses as to the influence of individual part icles or  groups of part icles  on the mean field of 
thermodynamic  forces  and cur ren t s  in the d i sperse  medium and on attempts to find an approximate stat ist ical  
descr ipt ion of the perturbations introduced by the par t ic les .  More r igorous problems involving such per turba-  
tions may be formulated within the f ramework  of the general  theory of [15]. We emphasize that the problem of 
determining the macroscopic  coefficients of thermal  conductivity or diffusion charac te r i s t i c  of the d isperse  
medium as a whole f rom the known propert ies  of the phases that it contains, and its mie ros t ruc tu re ,  is apa r t i e -  
ular  ease  of the more  general  problem of descr ibing t r ans fe r  p rocesses  in heterogeneous mater ia ls ,  d i s -  
cussed in [16]. 

We cons ider  a d isperse  medium containing spher ical  part icles of identical size and proper t ies .  The 
Pecle t  number ,  cha rac te r i z ing  the convective heat t r ans fe r  inside and outside the individual par t ic les ,  is as -  
sumed to be smal l  in compar i son  with unity, so that it is possible to neglect the effect of random phase pulsa-  
tions and also of regular  motion associated with the mean flow of continuous phase past the par t ic les .  In addi- 
tion, we neglect  the conductive heat t r ans fe r  over  the d isperse  phase caused by d i rec t  contact between par t i -  
c les .  (These contacts occur ,  genera l ly  speaking, not only in densely packed sys tems with motionless part icles 
of g ranu la r -bed  type, o r  in concentrated composi te  ma te r i a l s ,  but also in sys tems with pulsating part icles of 
fluidized-bed type). Then, under s teady conditions, when there is no heat t ransfer  between the phases and their  
mean tempera tures  r 0 and T 1 are  equal to the mean temperature  r of the medium as a whole, we write the equa- 
tion [15] 

vq = 0, q = - -  ~.oV T - -  (k 1 - -  )~0) ( (1. - -  0) vT ) (1 

in a coordinate sys tem fixed in the medium ; in this equation 

< ( 1 - - 0 ) v T > = n ( r )  ~ x*(r+xlr )ndx,  (2) 
x--a 

the integrat ion being taken over  the surface of a specimen particle of the medium with cen te r  at the point r, 
at which the mean tempera ture  is r* (the notation of [15] is employed). The vector  defined in Eq. (2) should be 
a l inear  function of the vec tor  VT charac te r iz ing  the anisotropy of the heat-conduction p rocess ,  i.e., we may 
write 

< (1 - -  0) vT > = pvv~, q = - -  )~VX, ~ = ~o + (3.1 - -  3.o) Pv, (3) 
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where v is an unknown coefficient  depending on p and the thermal  conductivity of the phases,  while I acts as 
the effective thermal  conductivity of the disperse  medium; both these pa ramete r s  may be calculated from 
Eq. (2) if the tempera ture  T* is known. Note that in the above discuss ion it was assumed implici t ly that the 
l inear  s c a l e  of the mean cha rac t e r i s t i c s  of the medium (for example,  its concentration) is significantly l a rge r  
than the scale of the tempera ture  field, so that the vec tor  Vp determining the anisotropy of the medium itself 
may,  in general ,  be excluded f rom considerat ion.  

To determine the tempera ture  inside the specimen part icle  we cons ider  the perturbations that it p ro-  
duces in the mean tempera ture  field of the medium, which we write in the form T = Er.  An approximate for -  
mulation of this problem follows, for  example, f rom the method proposed in [15] of closing an infinite chain 
of equations descr ibing a temperature  field perturbed by many par t ic les .  Taking the origin of the coordinates  
at the cen te r  of the specimen par t ic le ,  for  the mean temperature  T~ of the continuous phase close to the par t i -  
cle we have the problem 

v[B(r)v~*l = 0 ,  r>a; AT* = 0 ,  a>r>/O, 

VT*-+E, r--~oo; ~ < c o ,  r = 0 ,  (4) 

z* = ~*, B (a) nv~* = ~lnV~*, r = a, 

where 
r t~l 

B(r) = Xo[~(~), [3(~)= 1 +( •  1)pw(~), ~-- a ~.o 

while, on the basis of [15], the function z(O may be represented in the following form:  

(~) = 27 - -  56~ + 30~ ~ - -  ~ 
- - ,  1 < ~ < 3 ,  

z(~)= l, ~>~ .  

(5) 

(6) 

It is evident that a(1) = 0, so that B(a) = ~'0; for  ~ > 3, B(r) = ~. 

Formal ly ,  Eq. (4) cor responds  to the idea that the specimen part icle  is immersed  in some hypothetical 
homogeneous medium, the effective thermal  conductivity of which is B(r), i.e.,  depends on the distance to the 
surface of the par t ic le .  F o r  a medium of low concentrat ion,  it is permiss ib le ,  in general ,  to ignore the depen- 
dence in Eq. (6), i .e. ,  to take a(0 = 1. This amounts to not taking into account that the part icles  cannot inter-  
penetrate,  i .e. ,  that the centers  of adjacent part icles cannot be less than 2a apar t .  F o r  a concentrated me-  
dium, g (0  may be approximated by a step function which is ze ro  for  ~ < 2 and unity for ~ > 2. This corresponds  
to a specimen par t ic le  i m m e r s e d  in a hypothetical homogeneous medium which is separated from the s u r -  
face of the particle by a spher ica l  layer  filled with a pure continuous phase. The idea of such a l aye r  was f i rs t  
introduced in [17], on the basis of phenomenological considerat ions .  However ,  the thickness of this layer  is a 
and is independent of the concentrat ion;  this is con t ra ry  to the usual assumption,  cha rac te r i s t i c  for  cell  models,  
which was used, for example,  in [5, 13], in calculating the effective thermal  conductivity. The solution of Eq. 
(4), under the given simplifying assumptions ,  was obtained in [14]. 

The formulation in Eq. (4) of the spec imen-par t i c le  problem has a fundamental deficiency in that the 
mean tempera ture  and the heat flow, which, in general ,  should not depend on fixing the cen te r  of the particle 
at a given point, are found to be formal ly  related by the express ion  q = --B(r)VT, which d isagrees  with the 
analogous relation in Eq. (3). It is c lea r  f rom e lementa ry  considerat ions that this relation, which refers  to 
the d isperse  medium as a whole, should not be sensit ive to the position and choice of the specimen part icle ,  
which can only affect the cha rac te r  of the perturbat ion T' = T~ - T o of the mean tempera ture  field and not the 
field itself. Therefore ,  the spec imen-par t i c le  problem should only be formulated for this perturbat ion,  with 
respec t  to which the particle surface acts as an external  boundary. The s ta tement  of the problem is eas i ly  ob- 
tained by the general  method of [15]. Omitting the details of the derivation,  we write the final result :  

v [B( r )v~ ' ]=O,  r>a, A~* =0 ,  a > r ~ O ,  

�9 ' -+0 ,  r-+oo, ~*<cr  r = 0 ,  (7) 

�9 ' -4- Er = ~*, /~0nV~' -4-/~nE = ~ l n v  ~*, r = a ,  

the function B(r) being determined as before f rom Eq. (5). 
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Fig.  1. Concentra t ion  dependence of d imens ion less  
thelTnal conductivi ty ~ of medium for  var ious  n (num- 
bers  on the curves ) .  

Fig. 2. Value of f3 as a function of p for  sma l l  n (num- 
bers  on the curves ) .  
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Fig. 3. Compar i son  of resu l t s  
obtained f rom Eq. (12) for  x = 
0 (continuous curve)  with ex -  
pe r imenta l  data of [13, 18-20]: 
1) [18];2) [13];3) [19]; 4) [20]; 
the dashed line co r r e sponds  to 
the formula  in [5, 13]. 

The boundary-value problem in Eq. (7) may be considerably simplified if it is taken into account that the 
angular dependences of T' and ~-* are contained in the factor Er. Then Eq. (7) reduces to a two-point problem 
for ordinary differential equations with the independent variable r; the parameter v acts as an eigenvalue of 
the problem, for the determination of which there is a "superfluous" boundary condition. A special numerical 
method will be developed for the solution of this eigenvalue problem. 

To obtain the result in analytical form, the following approximation is used: 

0, ~ -~ 2, B (r) = / )~~ r < 2a, (8) 
~(~) = 1, ~ 2, [~., r :> 2a. 

Then the express ion  for  r > a in Eq. (7) leads to the Laplace  equation for  the t e m p e r a t u r e  in the regions a < r < 
2a and r > 2a; the the rma l  conductivi t ies  in these regions a re  2'o and ~, respec t ive ly ,  and at the i r  boundaries  the 
usual continuity conditions apply for  the t empe ra tu r e  and the normal  component  of the heat  flow. The solution 
of this p rob lem is obtained by s tandard  means  and takes  the fo rm 
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where 

r ~ 2a, 

�9 * = CEr, (9) 

A -  12 (z--[~), C =  1 (7132+22~+7), 
D D 

A' = - -  _ 4  (• _ [~)(2[~ + I), C' = _~1 (• --[~)([3 - -  1), (10) 
D D 

~,1 D = [ ~ ( 7 •  [ ~ = [ ~ ( o o ) = l + ( •  •  

Here the dimensionless  pa rame te r s  ~ and ~ are  used for  the thermal  conductivity, and t hepa rame te r  v intro- 
duced in Eq. (3) coincides with C. The formal  representat ion of X can be obtained from Eqs. (3) and (10): 

~, = ~,o + (~,1 - -  ~0)(7[ ~z + 22~ + 7)[[3 (7~ + 17) + 5~ + 7]-19 . (11) 

Dividing Eq. (11) by ~ ,  we obtain an equation for  8; its solution 

[3 = [7• (1 - -  p) + 17 + 7p1-1{• (1 + 119) + 5 "  t lp  

+ ([• (1 + 1 lp) + 5 - -  119] 3 + [7• (1 - -  p)+ 17 + 7pl[• (5+79) + 7 (1--p)])',~} (t2) 

finally de termines  the effective thermal  conductivity of the d isperse  medium. 

The dependence of/3 on p is shown in Fig. 1 for ~t > 1 (i.e., for  media containing part icles  of higher  ther -  
mal conductivity) and in Fig. 2 for  • < 1 (i.e., for  media with poor ly  conducting inclusions). In o rde r  to improve 
the accuracy  of Eq. (12), which is based on the model approximation in Eq. (8), we performed a d i rec t  numer i -  
cal  solution of Eq. (7) for individual values of ~ and p, using a BESM-4 computer .  In all cases ,  the d i sc rep -  
ancy in the resu l t s  for/3 did not exceed 4-5%. 

Sinc.e many other  empir ica l  and model relat ions have been proposed for the effective thermal  conduc- 
tivity of d isperse  media,  it is par t icu lar ly  impoPtant to make a thorough compar ison of Eq. (12) with exper i -  
mental  data. In concentrated media  with heat-conducting inclusions,  contact  heat t r ans fe r  d i rec t ly  between the 
par t ic les  may play a significant role,  and therefore  the theory was compared  mainly with data refer r ing  to 
situations where ~ < 1, i .e. ,  with experimental  data on the diffusion of impurit ies in a g ranu la r  bed with p rac -  
t ical ly impermeable  par t ic les ,  on heat  conduction in porous mate r ia l s ,  and on the e lec t r ica l  conduction of mix- 
tures  with nonconducting inclusions, also lacking surface  conduction by solvated shel ls ,  etc.  The results  of the 
compar i son  provide persuasive support  for  Eq. (12), although in a number  of cases  the difference from other 
fo rmulas  is very  slight. An example of the compar ison  of theoret ical  curves  corresponding to Eq. (12) for ~ = 
0 with experimental  data f rom [13, 18-20] is shown in Fig. 3, where the dashed line shows a curve derived from 
one of the best-known formulas ,  obtained in [5, 13]. 

F o r  ~ >> 1 and large p, the results  given by Eq. (12) are too low, This is a resul t  of neglecting contact  
heat  conduction. In principle,  contact  heat conduction may be taken into account  by consider ing s imultaneously 
the heat  t r ans fe r  of a specimen particle with two coexisting hypothetical media that model phases of the me-  
dium and have,  in genera l ,  different mean t empera tu res .  Using the superposi t ion principle,  the theory can 
eas i ly  be extended to c o v e r  polydisperse media and media containing par t ic les  of different thermal  conductivi-  
t ies.  The analysis  of these factors  involves simple but ra ther  cumbersome additional calculations and falls 
outside the scope of the present  work. 

A, A' 
~2 

B(r) 
C, C ' ,  D 
E 
n 

n 

r 

N O T A T I O N  

are the coefficients  in Eqs.  (9) and (10}; 
is the part icle radius;  
is the function defined in Eq. (5); 
are the coefficients  in Eqs.  (9) and (10); 
is the mean tempera ture  gradient  of medium; 
is the countable par t ic le  concentration; 
is the unit vec to r  along external  normal ;  
is the rad ius -vec tor ;  
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: ~ / ~ ' o ;  ~(~) 
x = Xl/~.0; ~. 
Y 

P 

T 

is the function in Eq. (5); 
is the t he rm a l  conductivity;  
is the p a r a m e t e r  introduced in Eq. (3); 
is the d imens ion less  va r i ab le  f rom Eqs.  (5) and (6); 
is the volume concent ra t ion  of pa r t i c l e s ;  
Ls the function defined in Eq. (6); 
ts the mean  t e m p e r a t u r e .  

I n d i c e s  

0 is the continuous phase; 
1 is the d i spe r se  phase;  
* is the t e m p e r a t u r e  inside and outside spec imen  par t ic le .  
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